Disaster Advances

Vol. 18 (2) February (2025)

Decoding Urban Heat: A Decadal Analysis (1991-2021) of
Land Surface Temperature and Thermal Comfort

Dynamics in Coastal Taluka of Bardez, Goa, India
Gaonkar Venkatesh Prabhu'?, Nadaf F.M.>* and Kapale Vikas*

1. Department of Geoinformatics, Government College of Commerce & Economics, Borda Margao, Goa (Autonomous), INDIA
2. Goa University, Cluster Research Centre of Geography, Government College of Arts, Science & Commerce, Khandola, Marcela, Goa, INDIA
3. Government College of Commerce & Economics, Borda Margao, Goa (Autonomous), INDIA
4. Indian Institute of Technology, Kanpur, INDIA
*fmnadaf@gmail.com

Abstract

The urban heat island phenomenon refers to the
alteration of the climate in urban areas resulting from
the disruptions caused by urban development. This
issue is of immense concern for the vast number of
individuals living in cities. The rural regions across the
world are diminishing at a rapid rate, leading to
significant transformations in land use and land cover.
The dynamics of urban thermal comfort is closely
linked to these changes. The assessment of urban
thermal comfort levels can be accomplished through
the utilization of the urban thermal field variance index
(UTFVI) which is derived from LST data. The study
reveals that Bardez taluka, located in Goa, India, has
witnessed substantial alterations in land use and land
cover over the past three decades, primarily due to
economic advancement and population growth. From
1991 to 2021, the Urban thermal field variance index
(UTFVI) in the Bardez taluka has shown a clear
upward trend, indicating increased temperature
fluctuations in urban areas. This rise has negative
effects on residents' comfort, as the size of land offering
"excellent" comfort has decreased from 37.30 sq. km
(14.76%) in 1991 to 27.05 sq. km (10.71%) in 2021
showing a decrease of 4.05 %.

Conversely, areas with the "worst" comfort level have
increased from 13.98 sq. km (5.54%) to 38.17 sq. km
(15.11%) showing a 9.57% increase during the same
period. These changes are influenced by factors like
urbanization, impenetrable surfaces like asphalt and
concrete, towering structures and crowded
infrastructure, minimal green areas, altered
microclimate, human actions such as industrial
processes, transportation and energy consumption,
which can create urban heat islands and raise overall
temperatures in cities. These findings carry significant
implications for urban planning, policy-making and
sustainable development. In addition, the study
provides important insights into the consequences of
anthropogenic actions and alterations in land use on
urban heat and thermal comfort.
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Introduction

Earth is presently confronting a variety of challenges and
one noteworthy concern is the issue of urban heat. Urban
regions are encountering an upswing in temperatures in
comparison to their rural counterparts®?. This increase in
temperature can be ascribed to a combination of natural
elements and human activities, encompassing climate
change, industrialization, urbanization and modifications in
land use and land cover’. These elements collectively
contribute to the occurrence of urban heat, presenting
difficulties that call for meticulous consideration and
strategic interventions®®. Decoding urban heat involves
understanding the relationship between different factors
such as land surface temperature (LST), air temperature and
urban structure?.

Land is a crucial natural resource that is necessary for human
survival and serves as the basis for all functions of terrestrial
ecosystems®1421 which act as an asset due to the interaction
between factors such as topography, environment, climate
and soil, as well as human aspects such as demographics,
technical capabilities and cultural and traditional activities*?.
Over the past century, there have been significant changes in
land use and land cover on a regional and temporal scale?.
These changes have primarily occurred as a result of
economic progress and population growth. Unfortunately,
due to unsustainable human actions, the physical
environment is experiencing alarming and extensive
changes*346, More than 50% of the global population now
resides in urban areas, marking the era of the "urban
century"127,

The alteration of land use and land cover is a major
environmental change happening worldwide®. It is crucial to
comprehend how these changes interact with climate,
ecological processes, biodiversity and human activities*?"5’,
Since different land uses and land covers have distinct
characteristics in terms of energy radiation and absorption,
the conversion of land use and land cover changes is the
primary cause for modifying land surface temperature
(LST)>2. The temperature of bare ground is often higher than
that of other settings such as forests or agricultural
fields®>47.75,
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The impact of tourism on land cover and the environment is
especially severe in coastal areas, resulting in a decline in
water bodies and vegetation and an increase in built-up
areas®>444976 - The conditions in tourism areas are
deteriorating due to improper land use and land cover
practices including deforestation, tourism-related activities
and urban development at various scales***.

Urbanization modifies the local urban climate by increasing
LST %661, Research has shown a strong correlation between
LST and changes in land use and land cover classes®7%72, It
can be inferred that LST and land use and land cover changes
are closely related since the conversion of land use and land
cover leads to urban heat island effects and subsequently
affects the local climate®?7%73, The urban thermal field
variance index (UTFVI) is calculated using LST “° which is
commonly used to study urban thermal comfort levels. The
concentration of UTFVI is higher in places that are
significantly warmer than the surrounding rural regions*+¢°,
To measure the level of urban thermal comfort, research has

been conducted using the urban thermal field variance
indeXlS,23, 26,28,34,39,41,44,60_

Bardez is the most prominent administrative division of
North Goa, India, known for tourism activities and rapid
urban expansion. The main goal of this study is to
understand changes in land use, to calculate the UTFVI
using geospatial and geostatistical approaches like linear
regression and to identify optimal urban comfort zones in the
research area. Further, this research attempts to examine the
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land use land cover pattern in conjunction with LST. UTFVI
technique can help to control future changes caused by land
use, land cover and land surface temperatures.

Material and Methods

Study Area: The primary focus of ongoing research is
Bardez taluka, a well-known administrative subdivision
located in the northern part of Goa, which is not only
acknowledged for its geographical importance but also
renowned as a prominent global tourist destination.
Positioned strategically, this taluka is bounded by the
Chapora River in the north, the Mandovi River in the south,
the Mapusa River in the east and the majestic Arabian Sea in
the west (Fig. 1 and fig. 2). Bardez taluka extends across the
latitudinal coordinates of 15°37'17.15"N to 15°35'23.66"N
and the longitudinal coordinates of 73°48'0.73"E to
73°51'50.35"E, encompassing an exceptionally diverse and
environmentally significant area for thorough examination
and evaluation.

Database and Methodology: Fig. 3 illustrates the
methodological flow chart outlining the different steps in
processing and analysis. Processing involves image
processing such as radiometric and geometric corrections,
while analysis includes creating land use land cover maps,
accuracy assessments, retrieval of LST, estimation of
surface urban heat island, urban thermal field variance index,
urban thermal comfort level and stack profile.
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Figure 1: Location Map of Bardez Taluka
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The study is based on both primary and secondary sources.
The primary data was obtained from field observations as
well as ground truthing. The secondary data includes the
LANDSAT satellite images from 1991 and 2000 obtained
from earthexplorer.usgs.gov. There was no cloud cover in
both images. The satellite images were captured in February,
during the spring season when tree canopies are in full bloom
(Table 1).

Image processing and hybrid classification: In image
processing, for classification and LST, ERDAS Imagine 15
software was used to apply atmospheric and radiometric
corrections to improve accuracy and to eliminate errors in
preparation for subsequent calibrations. The corrected data
was used for classification purposes. To perform hybrid
classification, the study area was determined by overlaying
the study region's shape file on satellite images from 1991
and 2021. Anderson level II classification scheme?305259
was opted for the land use land cover classification. The
study area was classified into 19 major classes. The clipped
area was later digitized as tidal river, fresh water bodies, salt
pans, forested wetlands, non-forested wetlands, agricultural
land, coconut plantation, cashew plantation, barren land,
bare exposed rocks, sand dunes and sandy area, residentiall,
commercial and services, mining, transportation and
utilities, DM and FDM forest land, open scrub and fairly
open scrub, industrial and fallow land®8,

The data derived from the LULC classification aids in
comprehending the positive and negative developments in

BARDEZ TALUKA:
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Bardez taluka. ArcMap version 10.8 was utilized for
classifying the data, facilitating comparative analysis of
spatio-temporal changes from 1991 to 2021.

Later, the technique of accuracy assessments was performed
for a better understanding of the accuracy of LULC maps
derived from on-screen digitization (hybrid classification)
2954 The Kappa coefficient is a tool that helps to measure
the agreement between collected data and reference data
16,2253 n total, 152 random points were chosen in the study
area to calculate accuracy for the years 1991 and 2021. The
formulas for accuracy assessment in 1991 and 2021 were
derived accordingly®=7.

Users Accuracy
__ No. of Correctly Clasified Pixels € Category +100

- The Row Total

)

Produced Accuracy
_ No. of Correctly Clasified Pixels € Category +100

The Column Total

@

Overall Accuracy

_ Total no. of correctly classified pixels (diagonals) «

100

@)

Total no. of reference pixels

Kappa Coefficient
_ (TS*xTCS)-Y.(Column Total » Row Total)

TS2-Y(Column Total * Row Total)

* 100

(4)

where TS = corrected sample and TCS = total corrected
sample.
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Figure 2: Database Maps of Study Location.
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Table 1
Database of study location
Satellite Path Row Date Cloud
Cover
LANDSAT (TM) 147 049 01/02/1991 0
LANDSAT (OLI) 147 049 03/02/2021 0

| LANDSAT Satellit

e Images |

1991 2021

+

| Image Processing |

Atmospheric and Radiometric
Corrections

L4

l

‘ Anderson classification scheme (level 2) ‘

| LULC 1991 H LULC 2021 |

| Study Area Extraction |

4-| Land Surface Temperature |

| LST 1991 ” LST 2021 ‘
1
| Accuracy Assessment v
Normalizing using maxi.
and min. Temperature
SUHI 1991 UTFVI 1991
& 2021 & 2021
—’| Urban Thermal Comfort Level (UTCL) ‘47

Statistical Analysis

Relationship between
LULC and LST

Figure 3: Methodological Framework

The evaluation of the LULC Classification for 1991 and
2021 involved comparing it with Landsat - 5 (TM) and
Landsat -8 (OLI) natural color data, merging bands from
these satellites and presenting them using RGB color

combinations 3, 2, 1 for Landsat - 5 and 4, 3, 2 for Landsat -
819'65’74.

Retrieval of LST: LANDSAT TM and OLI satellite images
were used to obtain land surface temperature. The thematic
mapper's thermal band was band 6 (10.40 um- 12.50um)
with a spatial resolution of 120 meters %4, while the OLI
thermal bands were band 10 (10.60 pum- 11.19) and band 11
(11.50 pm- 12.51pm) with a spatial resolution of 100
meters24858, The data from both years were later re-sampled
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to 30-meter resolution using the pan-sharpen tool in ArcMap
10.8.

Using egs. (5) and (6) for Landsat 5 and Landsat 8,
respectively, digital numbers (DN) were converted to
radiance.

Ly =

Equation (1) was used for Landsat TM where #, L; =
Spectral radiance, L4, = Maximum spectral radiance of
band 6, L,ina = Maximum spectral radiance of band 6,
QCaly,q,= maximum digital number (DN) of the band 6,

Lmaxa—Lmina

m) * (QCal — QCalyin) + Lyinza (5)
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QCal,,ip= minimum digital number (DN) of the band 6,
QCal = bands' digital value (DN), which ranges from 0 to
25531

Ly =M, X Qcai X Ay (6)

Equation (2) was obtained for Landsat OLI from® where L,
= Spectral radiance, M;= scaling factor for multiplicative
radiance, Qc, =bands (DN) value, A;= band radiance
additive scaling factor for band 10 and band 11 obtained
from metadata of the satellite imagery?*0243,

Secondly, to calculate Brightness temperature in °C spectral
radiance was further calculated. Eq. (7) was used for
calculation purposes:

= W— 27315 (7)

where BT = Top of atmospheric brightness temperature (°C),
A, = Top of atmosphere (TOA) spectral radiance, K,and K,
are the calibration constants of the thermal band of Landsat
5 and Landsat 8.

Thirdly, the normalized difference vegetation index (NDVI)
was calculated by considering the output of brightness
temperature. Normalized difference vegetation index is the
standardized vegetation index which is calculated using two
bands of Landsat 8 and Landsat 5 namely, for Landsat 8 OLI
(band 5) infrared band and (band 4) red band and Landsat 5
TM (band 4) infrared band and (band 3) red band
respectively?56467,

NIR-R
NIR+R

NDVI =

@)

where NIR = Near Infrared Band and R = Red band of
Landsat satellite imageries.

Fourthly, to calculate the proportion of vegetation, it is
important to consider the values of eq. (8). Eq. (9) is used for
the calculation of Pv34°,

NDVI-NDVIpi, 12
Pv = [NDVImax—NDVImin] ©)
where Pv = proportion of vegetation, NDVI = Normalized
Difference Vegetation Index, NDVI,,;,= Minimum DN
value of NDVI output and NDVI,,,,,,= Maximum DN value
of NDVI output.

The output of Pv helped to calculate land surface emissivity.
The emissivity is obtained from eq. (10)*:

€ =0.004 X Pv + 0.986 (10)
where & = emissivity, Pv= calculated proportion of

vegetation using eg. (10) and value 0.986 is the
corresponding value of the equation.
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Lastly, to retrieve land surface temperature, inputs were
taken from eq.

T
LST = —7+—— 11
1+<'z—§)*ln(s) ( )

where BT = Top of atmosphere brightness temperature (°C),
A = wavelength of emitted radiance, ¢ = land surface

emissivity and c2=, Constant value obtained by the formula
h*c/s 20,36,51.

Estimation of SUHI and UTFVI: Based on the literature,
determining SUHI involves measuring temperature in urban
and rural areas 3! simultaneously to find the temperature
difference, which typically shows urban areas being warmer.
SUHI is computed with equation (12) and UTFVI is used to

guantify SUHI vulnerability in the study area with equation
(13) 13,34,38,50_

SUHI = 50m (12)
STD

where T, = land surface temperature, T,,, = mean of the land

surface temperature of the study area and STD = standard

deviation.

UTFV =2 (13)

m

where T, = land surface temperature and T,,, = mean of the
land surface temperature of the study area.

Results and Discussion

To understand the changes in Land Use and Land Cover
(LULC) from 1991 to 2021, figures 4 and 5, along with table
2 were created for detailed analysis of the study area. In
1991, the landscape was mainly characterized by coconut
and cashew plantations, barren land, residential areas as well
as DM and FDM forest cover (Dense Moist and Fragmented
Dense Moist).

More precisely, coconut plantations covered an area of 15.47
sg. km (6.15%), while barren land spanned over 58.13 sq.
km of areas (23%), residential areas accounted for 27.94 sq.
km (11.15%) and DM and FDM forests made up 32.14 sq.
km (12.72%).

In 2021, there were significant changes in all 19 land use
classes, with a noticeable 2.74% decrease in coconut
plantation area (Table 2). In 2021, some of the coconut
plantation land was converted into residential (1.37 sq. km),
commercial and services (5.54 sg. km) and transportation
and utilities (0.05 sg. km) purposes, making a total of 6.96
sg. km out of the original 13.89 sq. km (Fig. 6). In the same
way, land that was once used for growing cashew trees, was
transformed into residential (0.83 sq. km) and commercial
and service areas (0.85 sg. km), amounting to a total of 1.73
sg. km (Fig. 6). The growing tourism industry was mainly
responsible for these changes.
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From 1991 to 2021, the area of barren land decreased
significantly by 5.99%, dropping from 58.13 sg. km to 42.99
sg. km. During this shift, barren land was transformed into
residential purpose (5.06 sq. km), commercial and services
(7.00 sg. km) and industry (1.87 sq. km), as shown in figure
6. Additionally, there was a notable increase in the area of
freshwater bodies, rising from 0.14 sq. km in 1991 to 0.083
sg. km in 2021, due to the development of a canal for
household and agricultural use (Table 2).

Approximately 0.42 sq. km of residential land was changed
to commercial and service use while agricultural land,
coconut and cashew plantations, barren land, DM and FDM
forest cover and open scrub together added 10.53 sg. km to
the growth of residential areas (Figures 6 and 7). As a result,
the area of residential land grew from 27.94 sq. km in 1991
to 38.07 sg. km in 2021. Notably, there was a significant

Vol. 18 (2) February (2025)

increase in the area of commercial and service land which
grew from 3.72 sq. km to 24.32 sg. km, representing 80%
increase. The increase was primarily fueled by the tourism
sector and urban sprawl, particularly in the outskirts
extending towards Porvorim (Figure 5).

Observations revealed a decline in the area of DM and FDM
forest cover and open scrub from 27.02 sg. km and 14.83 sg.
km in 1991 to 2021 respectively, with no change in their total
combined area. Significantly, land that was once labelled as
DM and FDM forest cover was converted for residential and
commercial purposes (Figures 6 and 7). To sum up, the rise
in tourism and associated activities has led to modifications
in two LULC categories (Residential and Commercial and
Services) from 1991 to 2021 as shown in figures 4, 5 and 6
and table 2.

NNNNN

oom

LAND USE LAND COVER MAP OF 1991

LAND USE LAND COVER MAP OF 2021

Figure 4: LULC 1991

Figure 5: LULC 2021

Table 2
Percentage change in area from 1991 to 2021
Classes 1991 Sq. 1991 2021 Sq. 2021 %
Km. % Km. Y% (Increased/Decreased)

Tidal River 16.42 6.59 15.87 6.28 -0.31
Fresh water bodies 0.14 0.05 0.83 0.33 0.28
Salt Pans 0.11 0.04 0.17 0.07 0.03
Forested Wetland 5.15 2.09 6.09 2.41 0.32
Non-forested wetland 4.57 1.8 4.47 1.77 -0.03
Agricultural Land 47.94 18.98 45.63 18.06 -0.92
Coconut Plantation 13.89 5.49 6.95 2.75 -2.74
Cashew Plantation 15.47 6.15 13.69 5.42 -0.73
Fallow Land 1.73 0.68 1.49 0.59 -0.09
Barren Land 58.13 23 42.99 17.01 -5.99
Rocky Areas 0.53 0.4 0.66 0.26 -0.14
Sand dunes and Sandy Area 2.22 0.87 1.62 0.64 -0.23
Residential 27.94 11.15 38.07 15.07 3.92
Commercial and Services 3.72 1.47 24.32 9.63 8.16
Industrial 0.31 0.12 2.20 0.87 0.75
Transportation and Services 4.08 1.17 4.79 1.90 0.73
DM and FDM Forest Land 32.14 12.72 27.06 10.71 -2.01
Open scrub and Fairly Open scrub 17.95 7.14 15.42 6.10 -1.04
Mining 0.21 0.09 0.34 0.13 0.04
Total 252.66 100 252.66 100

https://doi.org/10.25303/182da01017
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Figure 6: Percentage change in area from 1991 to 2021.
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Figure 7: Transition Matrix 1991-2021

Accuracy Assessment: A confusion matrix was created
using different equations to compare land use land cover
classes with ground truth data and matrix 1 and matrix 2. The
results are shown in matrix 1 and matrix 2. Ground-
controlled points with reference maps for 1991 and 2021 are
displayed in fig. 8 and fig. 9. In year 1991, classes such as
tidal river, fresh water bodies, salt pans, coconut plantation,
barren land, sand dunes and sandy area, residential,
commercial and services, mining, DM and FDM forest land,
open scrub and fairly open scrub, industrial and fallow land
shared 100 % user’s accuracy, while it was noticed that
classes namely agricultural land (91.66%), cashew
plantation and bare exposed rocks (85.71%) and non-
forested wetland shared the lowest users accuracy of (75%),
while in year 2021 classes such as tidal river, fresh water
bodies, salt pans, forested wetland, coconut plantation,
cashew plantation, fallow land, barren land, base exposed
rocks, industrial,, transportation and mining gave 100%
users accuracy. Remaining classes such as residential, DM
and FDM forest land and open scrub and fairly open scrub

https://doi.org/10.25303/182da01017

(92.3%), sand dunes and sandy area (88%), agricultural land
(81.61%) and among all the classes, hon-forested class gave
less users accuracy of 75% (table 3). If we closely look at the
producer’s accuracy (table 3) except classes non-forested
wetland (77%,85%), forested wetland (100%, 83%),
agricultural land (84.61%, 100%), sand dunes and sandy
area (88.88%, 100%), residential (92.3%, 92%), commercial
and services (77.77%, 70%), DM and FDM forest land
(92.3%, 100%) and open scrub and fairly open scrub (92.3%,
100%) in the year 1991 and 2021 respectively, had low
producers accuracy while remaining classes gave 100%
producers accuracy, mainly due to the selected sites distant
from the scientific unit borders, which minimize the
likelihood of crossover with other scientific units and
accounted for the high percentage.

Thus, in the end, it can be interpreted that overall directed
classification accuracy was 93.42% and 94.73% for the years
1991 and 2021 respectively. (T) Kappa coefficient for the
year 1991 was 92.97% and 94.38% for the year 2021.
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Matrix 1
Relationship between LULC classes and Ground Truth (1991)

Classes 1 2/13]14]/5/6 |7]/8]9 |10 |11 12 |13 |14 |15 |16 |17 |18 |19 Total (User)
1 10 10
2 3 3
3 3 3
4 8 10
5 6 8
6 11 1 12
7 8 8
8 6 1 7
9 4 4
10 13 13
11 6 7
12 8 8
13 12 12
14 7 7
15 3 3
16 1 2 8 11
17 12 12
18 12 12
19 2 2

Total 10 [3|3(8|8|13 (8|64 |13 |6 9 13 19 3 8 13 |13 |2 152

(Producer)

Tidal river (1), fresh water bodies (2), salt pans (3), forested wetlands (4), non-forested wetlands (5), agricultural land (6), coconut
plantation (7), cashew plantation (8), fallow land (9), barren land (10), bare exposed rocks (11), sand dunes and sandy area (12),
residential (13), commercial and services (14), industrial (15), transportation and utilities (16), DM and FDM forest land (17), open
scrub and fairly open scrub (18) and mining (19).

Matrix 2
Relationship between LULC classes and Ground Truth (2021)

Classes 1123 |4 51|16 71819 (10 |11 (12 |13 |14 |15 |16 |17 |18 |19 Total
(User)

1 9 1 10
2 3 3
3 3 3
4 10 10
5 2 |6 8
6 12 12
7 8 8
8 7 7
9 4 4
10 12 1 13
11 7 7
12 1 7 8
13 12 12
14 7 7
15 3 3
16 1 |2 8 11
17 12 12
18 12 12
19 2 2

Total 93 (3|12 |7 |12 |8 |7 |4 |12 |8 |7 13 |10 |3 |8 |12 |12 |2 152

(Producer)

Tidal river (1), fresh water bodies (2), salt pans (3), forested wetlands (4), non-forested wetlands (5), agricultural land (6), coconut
plantation (7), cashew plantation (8), fallow land (9), barren land (10), bare exposed rocks(11), sand dunes and sandy area (12),
residential (13), commercial and services (14), industrial (15), transportation and utilities (16), DM and FDM forest land (17), open
scrub and fairly open scrub (18) and mining (19).

https://doi.org/10.25303/182da01017 8
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Table 3
Accuracy Assessment for the years 1991 to 2021
Classes % of Accuracy (1991) | % of Accuracy (2021)
Tidal River 100 100
Fresh water bodies 100 100
Salt Pans 100 100
Forested Wetland 80 100
Non-forested wetland 75 75
Agricultural Land 91.66 84.61
| Coconut Plantation 100 100
& | Cashew Plantation 85.71 100
> Fallow Land 100 100
© | Barren Land 100 100
8 | Bare exposed rocks 85.71 100
< | Sand dunes and Sandy Area 100 88.88
Residential 100 92.3
Commercial and Services 100 77.77
Industrial 100 100
Transportation and Utilities 72.72 100
DM and FDM forest land 100 92.3
Open scrub and Fairly Open scrub 100 92.3
Mining 100 100
Classes % of Accuracy (1991) | % of Accuracy (2021)
Tidal River 100 100
Fresh water bodies 100 100
Salt Pans 100 100
Forested Wetland 100 83
Non-forested wetland 75 85
- Agricultural Land 84.61 100
3 | Coconut Plantation 100 100
£ | Cashew Plantation 100 100
€ | Fallow Land 100 100
Z | Barren Land 100 100
2 | Bare exposed rocks 100 87
5 Sand dunes and Sandy Area 88.88 100
Residential 92.3 92
Commercial and Services 77.77 70
Industrial 100 100
Transportation and Utilities 100 100
DM and FDM forest land 92.3 100
Open scrub and Fairly Open scrub 92.3 100
Mining 100 100
Overall Accuracy 93.42 % 94.73 %
(T) Kappa Coefficient 92.97 % 94.38 %

Retrieval of LST

The increase in land surface temperature (LST) over the
study period was attributed to a decrease in vegetation cover
and an increase in impervious surfaces, mainly in built-up
areas such as residential and commercial services (Table 2)
as shown in fig. 10. To better understand LST, the area was
divided into five major classes: class 1: 16-20, class 2: 20-
24, class 3: 24-28, class 4: 28-32 and class 5: 32-36. In 1991,
the lowest temperature was in class 16-20 °C, while in 2021,
it was in class 20-24 °C. The minimum temperature of the
study area has also changed over the last three decades (Fig.

https://doi.org/10.25303/182da01017

10). The highest LST temperature varied between 1991 and
2021, with the highest temperature in 1991 being in class 28-
32, while in 2021, heating in the study area had increased,
particularly in built-up areas and barren land (Fig. 13 and
14).

Estimation of SUHI and UTFVI: The surface urban heat
index (SUHI) of the years 1991 and 2021 is delineated by
the map. SUHI serves as a metric to gauge the disparity in
temperature between urban areas and the surrounding rural
regions. In fig. 11, the legend located at the lower section of



Disaster Advances

the illustration elucidates that measurements of SUHI are
expressed in degrees Celsius (°C). In 1991 and 2021, the
range of SUHI spanned from -3.0°C (cooler than the
surrounding areas) to 3.0°C (warmer than the surrounding
areas). Throughout the year 1991, the majority of the area
exhibited values within the class -3.0 — 0.0 range, implying
that the urban heat island effect results in slightly elevated
temperatures in urban areas when compared to the adjacent
rural areas.

However, there are certain regions on the map, particularly
in the northern and western sections, that are depicted in
darker shades of orange, indicating the opposite trend. In
contrast to 1991, there appears to be a larger expanse falling
within the range of class 1.5 — 3 to >3.0, signifying an
intensification of the urban heat island effect. Furthermore,

ACCURACY ASSESSMENT 1991
C Ma Reference Map

’h
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the areas colored in green are smaller in 2021 when
compared to 1991.

The study area has undergone significant changes in land use
and land cover over the past three decades, primarily due to
economic progress and population growth. During the
period from 1991 to 2021, the urban thermal feel variation
index (UTFVI) in Bardez taluka exhibited a noticeable
upward trend, indicating an increase in temperature
fluctuations within urban areas. This increase has negative
implications for the comfort of the residents, as the area of
land that provides 'excellent’ comfort, has decreased from
37.30 square kilometers (14.76%) in 1991 to 27.05 square
kilometers (10.71%) in 2021, indicating a reduction of
4.05%.

ACCURACY ASSESSMENT 2021
LULC Map
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On the other hand, the area with the lowest level of comfort
has experienced an expansion from 13.98 square kilometers
(5.54%) to 38.17 square kilometers (15.11%), representing a
9.57% increase during the same period (Table 4). These
modifications are likely to be influenced by factors such as
urbanization, impermeable surfaces like asphalt and
concrete, towering structures and congested infrastructure,
limited green spaces, altered microclimate, human activities
such as industrial processes, transportation and energy
consumption, which have the potential to generate urban

Vol. 18 (2) February (2025)

heat islands and raise overall temperatures in cities, thereby
impacting the comfort levels of the residents.

The surface urban heat island (SUHI) effect and worsening
climatic conditions in urban areas are caused by increased
LST. The urban thermal field variance index (UTFVI)
phenomena provides a quantitative and qualitative
description of the SUHI effect. A Pearson's correlation
matrix is an adequate metric to establish a relationship
between multiple variables.
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Figure 13: UTFVI of the year 1991 and 2021 Barren Land
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Table 4
Showing Urban Thermal Comfort Level for the year 1991 to 2021
Class UTFVI UTFVI Area Area % Area Area % UTCL
Presence Sg. Km. 1991 1991 Sg._Km. 2021 2021
1 <0 None 37.30 14.76 27.05 10.71 Excellent
2 0-0.005 Weak 59.84 23.68 50.89 20.14 Good
3 0.005-0.01 Middle 60.82 24.07 63.45 25.11 Normal
4 0.01-0.015 Strong 52.45 20.76 28.54 11.30 Bad
5 0.015-0.02 Stronger 28.27 11.19 44.56 17.64 Worse
6 >0.2 Strongest 13.98 5.54 38.17 15.11 Worst
Total 252.66 100 252.66 100
Matrix 3
Correlation Matrix 1991
Layer LST SUHI UTFVI
LST 1.00000 0.97295 0.97295
SUHI 0.97295 1.00000 1.00000
UTFVI 0.97295 1.00000 1.00000
Matrix 4
Correlation Matrix 2021
Layer LST SUHI UTFVI
LST 1.00000 0.94652 0.94652
SUHI 0.94652 1.00000 1.00000
UTFVI 0.94652 1.00000 1.00000

The diagonal elements are one because of the self-
correlation and we can observe a strong correlation between
LST, SUHI and UTFVI. The matrix refers to the conclusion
that all the regions with higher LST experience higher SUHI
and UTFVI. Also, the SUHI and UTVFI show a one-to-one
correlation for both instances in 1991 and 2021.

t-test and f-test: Two separate groups were established for
the analysis of land surface temperature (LST) in the study
region for the years 1991 to 2021, as well as for the urban
temperature field vertex index (UTFVI) in those same years.
The average and variability of the groups were assessed
using the t-test and f-test.

Parameters of t-test, f-test: The tests were performed at a
95% confidence level or 5% significance level.

Null Hypothesis for t-test: Two groups are independent
random samples drawn from a normal distribution having
equal means with unknown variance.

Null Hypothesis for f-test: Two groups are independent
random samples drawn from a normal distribution having
the same variance.

h=0: Null hypothesis cannot be rejected at the 5%
significance level.

h=1: Null hypothesis can be rejected at a given confidence
level i.e. there is no statistical evidence that the null
hypothesis shall be accepted.

https://doi.org/10.25303/182da01017

p: p, or probability expresses the likelihood that any
observed variation across groups results from chance. The
value ranges between 0-1.

ci for t-test: Confidence interval of the population mean
with lower and upper bounds within a 95% confidence
interval.

ci for f-test: Confidence interval of the ratios of variances
with lower and upper bounds within a 95% confidence
interval.

Statistic: The test statistic value.

The results show that the mean and the variance of LST for
1991 and 2021 of the entire study region are statistically
significantly different at a 95% confidence level. In contrast,
the UTFVI has the same mean for 1991 and 2021, but the
variance is statistically significantly different.

Z-test: The z-test can be performed when the population
standard deviation is known and the sample size is very
large. Two LULC classes were segregated, namely, barren
and the built-up. These classes were considered the sample
and the entire region was considered a population for this
sampled data. With the information on the LST and UTFVI
standard deviation, two classes were compared with the
population mean.

Parameters of z-test - Null Hypothesis for z-test: The

sample is drawn from a normal distribution with the same
mean and standard deviation as the populations.

13
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h=0: Null hypothesis cannot be rejected at the 5%
significance level.

h=1: Null hypothesis can be rejected at a given confidence
level i.e. there is no statistical evidence that the null
hypothesis shall be accepted.

p: p, or probability expresses the likelihood that any
observed variation across groups results from chance. The
value ranges between 0-1.

ci: Confidence interval of the population mean with lower
and upper bounds within a 95% confidence interval.
Statistic: The test statistic value.

The results of z-tests performed on the samples specified in
table 7 and table 8 suggest that the population mean and the
sample mean are statistically significantly different for all
the categories. The mean LST of barren and built-up areas is
larger than the mean LST of the entire region. These LULC

Vol. 18 (2) February (2025)

categories suffer from higher LST and higher UTFVI
compared to the whole study area.

Conclusion

The study utilizes land surface temperature (LST) data and
the urban thermal field variance index (UTFVI) to assess
urban thermal comfort levels which are found to be
adversely affected by increased temperature fluctuations in
urban areas. The research highlights the impact of land use
and land cover changes such as urbanization, impenetrable
surfaces and reduced green areas, on the prevalence of urban
heat islands and their negative effects on residents' comfort
levels. The results of the analysis reveal significant shifts in
land cover classes over the three decades with notable
changes in areas such as coconut plantations, barren land,
residential areas and commercial and services zones.

Table 5
Showing T-test of LST and UTFVI.
Categories h p ci Statistic t
LST 1 0 -8.0294 -7.9983 -1010.1
UTFVI 0 0.99998 -0.00025925 -0.00025925 -2.7975e-05
Table 6
Showing F-test of LST and UTFVI.
Categories h p ci Statistic t
LST 1 0 2.3875 2.4231 2.4052
UTFVI 1 0 0.018152 0.018423 0.018287
Table 7
Showing hypothesis testing for the years 1991 and 2021 of Barren Land and Built-up Land (LST).
Year LULC Population | Population | Sample | Sample h p ci z-
Category mean Sigma mean Sigma Statistic
1991 Barren 21.345 3.5353 24.445 2.7925 1 0 24.418 | 24.472 226.12
Land
Built-up 21.266 2.4655 1 8.09e- | 21.232 | 21.301 | -4.4626
Land 06
2021 Barren 21.245 3.5353 30.759 2.6446 1 0 30.739 | 30.778 137.95
Land
Built-up 30.03 2.6446 1 0 30.014 | 30.046 82.081
Land
Table 8
Showing hypothesis testing for the years 1991 and 2021 of Barren Land and Built-up Land (UTFVI).
Year LULC Population | Population Sample Sample h p ci z-
Category mean Sigma mean Sigma Statistic
1991 Barren -2.0355e-08 | 0.0093969 0.069488 0.007545 | 1 0 0.0083836 0.008525 234.28
Land
Built-up - 0.0066764 | 1 | 1.de- - -0.00029351 | -8.2615
Land 0.0003848 16 0.00047608
2021 Barren -1.6655e-08 0.069488 0.049753 0.07449 1 0 0.049147 0.050359 160.81
Land
Built-up 0.018627 0.07449 1 0 0.018138 0.019116 74.665
Land
https://doi.org/10.25303/182da01017 14
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The findings suggest that these changes are largely driven by
factors such as tourism-related activities, rapid urban
expansion and infrastructure development. The urban heat
islands in the Bardez Taluka region have led to significant
alterations in land use and land cover, exacerbating urban
thermal comfort issues. The study finds that the urban
thermal feel variation index (UTFVI) has risen steadily
throughout the analyzed time frame, reflecting increased
temperature variations in urban areas. As a consequence, the
proportion of land providing excellent thermal comfort has
shrunk from 14.76% in 1991 to 10.71% in 2021 while areas
with poorer comfort levels have expanded correspondingly.
These trends are attributed to factors such as urbanization,
impervious surfaces and insufficient greenery along with
influences like tourism, infrastructure development and
climate change.

To address these issues, it is suggested to carry out strategies
that concentrate on intelligent urban planning, integrating
porous surfaces, enhancing vegetation quality, reducing
heat-generating activities, designing compact urban layouts
and strategically placing buildings to improve natural
ventilation and to minimize urban heat island impacts.
Encouraging energy efficiency, responsible energy
consumption and preserving green areas to mitigate urban
heat island make impact on comfort levels.
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