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Abstract  
The urban heat island phenomenon refers to the 

alteration of the climate in urban areas resulting from 

the disruptions caused by urban development. This 

issue is of immense concern for the vast number of 

individuals living in cities. The rural regions across the 

world are diminishing at a rapid rate, leading to 

significant transformations in land use and land cover. 

The dynamics of urban thermal comfort is closely 

linked to these changes. The assessment of urban 

thermal comfort levels can be accomplished through 

the utilization of the urban thermal field variance index 

(UTFVI) which is derived from LST data. The study 

reveals that Bardez taluka, located in Goa, India, has 

witnessed substantial alterations in land use and land 

cover over the past three decades, primarily due to 

economic advancement and population growth. From 

1991 to 2021, the Urban thermal field variance index 

(UTFVI) in the Bardez taluka has shown a clear 

upward trend, indicating increased temperature 

fluctuations in urban areas. This rise has negative 

effects on residents' comfort, as the size of land offering 

"excellent" comfort has decreased from 37.30 sq. km 

(14.76%) in 1991 to 27.05 sq. km (10.71%) in 2021 

showing a decrease of 4.05 %.  

 

Conversely, areas with the "worst" comfort level have 

increased from 13.98 sq. km (5.54%) to 38.17 sq. km 

(15.11%) showing a 9.57% increase during the same 

period. These changes are influenced by factors like 

urbanization, impenetrable surfaces like asphalt and 

concrete, towering structures and crowded 

infrastructure, minimal green areas, altered 

microclimate, human actions such as industrial 

processes, transportation and energy consumption, 

which can create urban heat islands and raise overall 

temperatures in cities. These findings carry significant 

implications for urban planning, policy-making and 

sustainable development. In addition, the study 

provides important insights into the consequences of 

anthropogenic actions and alterations in land use on 

urban heat and thermal comfort.  
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Introduction  
Earth is presently confronting a variety of challenges and 

one noteworthy concern is the issue of urban heat. Urban 

regions are encountering an upswing in temperatures in 

comparison to their rural counterparts32. This increase in 

temperature can be ascribed to a combination of natural 

elements and human activities, encompassing climate 

change, industrialization, urbanization and modifications in 

land use and land cover18. These elements collectively 

contribute to the occurrence of urban heat, presenting 

difficulties that call for meticulous consideration and 

strategic interventions66. Decoding urban heat involves 

understanding the relationship between different factors 

such as land surface temperature (LST), air temperature and 

urban structure2.  

 

Land is a crucial natural resource that is necessary for human 

survival and serves as the basis for all functions of terrestrial 

ecosystems1,14,21 which act as an asset due to the interaction 

between factors such as topography, environment, climate 

and soil, as well as human aspects such as demographics, 

technical capabilities and cultural and traditional activities42. 

Over the past century, there have been significant changes in 

land use and land cover on a regional and temporal scale1. 

These changes have primarily occurred as a result of 

economic progress and population growth. Unfortunately, 

due to unsustainable human actions, the physical 

environment is experiencing alarming and extensive 

changes43,46. More than 50% of the global population now 

resides in urban areas, marking the era of the "urban 

century"12,17. 

 

The alteration of land use and land cover is a major 

environmental change happening worldwide4. It is crucial to 

comprehend how these changes interact with climate, 

ecological processes, biodiversity and human activities4,27,57. 

Since different land uses and land covers have distinct 

characteristics in terms of energy radiation and absorption, 

the conversion of land use and land cover changes is the 

primary cause for modifying land surface temperature 
(LST)5,9. The temperature of bare ground is often higher than 

that of other settings such as forests or agricultural 

fields15,47,75.  
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The impact of tourism on land cover and the environment is 

especially severe in coastal areas, resulting in a decline in 

water bodies and vegetation and an increase in built-up 

areas35,44,49,76. The conditions in tourism areas are 

deteriorating due to improper land use and land cover 

practices including deforestation, tourism-related activities 

and urban development at various scales4,11. 

 

Urbanization modifies the local urban climate by increasing 

LST 56,61. Research has shown a strong correlation between 

LST and changes in land use and land cover classes55,70,72. It 

can be inferred that LST and land use and land cover changes 

are closely related since the conversion of land use and land 

cover leads to urban heat island effects and subsequently 

affects the local climate32,71,73. The urban thermal field 

variance index (UTFVI) is calculated using LST 40 which is 

commonly used to study urban thermal comfort levels. The 

concentration of UTFVI is higher in places that are 

significantly warmer than the surrounding rural regions44,69. 

To measure the level of urban thermal comfort, research has 

been conducted using the urban thermal field variance 

index13,23, 26,28,34,39,41,44,60.  

 

Bardez is the most prominent administrative division of 

North Goa, India, known for tourism activities and rapid 

urban expansion. The main goal of this study is to 

understand changes in land use, to calculate the UTFVI 

using geospatial and geostatistical approaches like linear 

regression and to identify optimal urban comfort zones in the 

research area. Further, this research attempts to examine the 

land use land cover pattern in conjunction with LST. UTFVI 

technique can help to control future changes caused by land 

use, land cover and land surface temperatures.   

 

Material and Methods 
Study Area: The primary focus of ongoing research is 

Bardez taluka, a well-known administrative subdivision 

located in the northern part of Goa, which is not only 

acknowledged for its geographical importance but also 

renowned as a prominent global tourist destination. 

Positioned strategically, this taluka is bounded by the 

Chapora River in the north, the Mandovi River in the south, 

the Mapusa River in the east and the majestic Arabian Sea in 

the west (Fig. 1 and fig. 2). Bardez taluka extends across the 

latitudinal coordinates of 15°37'17.15"N to 15°35'23.66"N 

and the longitudinal coordinates of 73°48'0.73"E to 

73°51'50.35"E, encompassing an exceptionally diverse and 

environmentally significant area for thorough examination 

and evaluation. 

 

Database and Methodology: Fig. 3 illustrates the 

methodological flow chart outlining the different steps in 

processing and analysis. Processing involves image 

processing such as radiometric and geometric corrections, 

while analysis includes creating land use land cover maps, 

accuracy assessments, retrieval of LST, estimation of 

surface urban heat island, urban thermal field variance index, 

urban thermal comfort level and stack profile.

 

 
Figure 1: Location Map of Bardez Taluka 
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The study is based on both primary and secondary sources. 

The primary data was obtained from field observations as 

well as ground truthing. The secondary data includes the 

LANDSAT satellite images from 1991 and 2000 obtained 

from earthexplorer.usgs.gov. There was no cloud cover in 

both images. The satellite images were captured in February, 

during the spring season when tree canopies are in full bloom 

(Table 1). 

 

Image processing and hybrid classification: In image 

processing, for classification and LST, ERDAS Imagine 15 

software was used to apply atmospheric and radiometric 

corrections to improve accuracy and to eliminate errors in 

preparation for subsequent calibrations. The corrected data 

was used for classification purposes. To perform hybrid 

classification, the study area was determined by overlaying 

the study region's shape file on satellite images from 1991 

and 2021. Anderson level II classification scheme7,30,52,59 

was opted for the land use land cover classification. The 

study area was classified into 19 major classes. The clipped 

area was later digitized as tidal river, fresh water bodies, salt 

pans, forested wetlands, non-forested wetlands, agricultural 

land, coconut plantation, cashew plantation, barren land, 

bare exposed rocks, sand dunes and sandy area, residential, 

commercial and services, mining, transportation and 

utilities, DM and FDM forest land, open scrub and fairly 

open scrub, industrial and fallow land8,68.  

 

The data derived from the LULC classification aids in 

comprehending the positive and negative developments in 

Bardez taluka. ArcMap version 10.8 was utilized for 

classifying the data, facilitating comparative analysis of 

spatio-temporal changes from 1991 to 2021. 

 

Later, the technique of accuracy assessments was performed 

for a better understanding of the accuracy of LULC maps 

derived from on-screen digitization (hybrid classification) 
29,54. The Kappa coefficient is a tool that helps to measure 

the agreement between collected data and reference data 
16,22,53. In total, 152 random points were chosen in the study 

area to calculate accuracy for the years 1991 and 2021.  The 

formulas for accuracy assessment in 1991 and 2021 were 

derived accordingly6,37. 

 
Users Accuracy 

=  
𝑁𝑜.  𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝐶𝑙𝑎𝑠𝑖𝑓𝑖𝑒𝑑 𝑃𝑖𝑥𝑒𝑙𝑠 ∈ 𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦

𝑇ℎ𝑒 𝑅𝑜𝑤 𝑇𝑜𝑡𝑎𝑙
∗ 100           (1) 

 

Produced Accuracy  

= 
𝑁𝑜.  𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝐶𝑙𝑎𝑠𝑖𝑓𝑖𝑒𝑑 𝑃𝑖𝑥𝑒𝑙𝑠 ∈ 𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦

𝑇ℎ𝑒 𝐶𝑜𝑙𝑢𝑚𝑛 𝑇𝑜𝑡𝑎𝑙
∗ 100           (2) 

 

Overall Accuracy  

= 
𝑇𝑜𝑡𝑎𝑙 𝑛𝑜.  𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑝𝑖𝑥𝑒𝑙𝑠 (𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙𝑠)

𝑇𝑜𝑡𝑎𝑙 𝑛𝑜.  𝑜𝑓 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑝𝑖𝑥𝑒𝑙𝑠
∗ 100       (3) 

 

Kappa Coefficient  

= 
(𝑇𝑆∗𝑇𝐶𝑆)−∑(𝐶𝑜𝑙𝑢𝑚𝑛 𝑇𝑜𝑡𝑎𝑙 ∗ 𝑅𝑜𝑤 𝑇𝑜𝑡𝑎𝑙)

𝑇𝑆2−∑(𝐶𝑜𝑙𝑢𝑚𝑛 𝑇𝑜𝑡𝑎𝑙 ∗ 𝑅𝑜𝑤 𝑇𝑜𝑡𝑎𝑙)
∗ 100           (4) 

 

where TS = corrected sample and TCS = total corrected 

sample. 

 

 
Figure 2: Database Maps of Study Location. 
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Table 1 

Database of study location 

Satellite Path Row Date Cloud 

Cover 

LANDSAT (TM) 147 049 01/02/1991 0 

LANDSAT (OLI) 147 049 03/02/2021 0 

 

 
Figure 3: Methodological Framework 

 

The evaluation of the LULC Classification for 1991 and 

2021 involved comparing it with Landsat - 5 (TM) and 

Landsat -8 (OLI) natural color data, merging bands from 

these satellites and presenting them using RGB color 

combinations 3, 2, 1 for Landsat - 5 and 4, 3, 2 for Landsat -

819,65,74. 

 

Retrieval of LST: LANDSAT TM and OLI satellite images 

were used to obtain land surface temperature. The thematic 

mapper's thermal band was band 6 (10.40 µm- 12.50µm) 

with a spatial resolution of 120 meters 44, while the OLI 

thermal bands were band 10 (10.60 µm- 11.19) and band 11 

(11.50 µm- 12.51µm) with a spatial resolution of 100 

meters2,48,58. The data from both years were later re-sampled 

to 30-meter resolution using the pan-sharpen tool in ArcMap 

10.8.  

 

Using eqs. (5) and (6) for Landsat 5 and Landsat 8, 

respectively, digital numbers (DN) were converted to 

radiance. 

 

𝐿𝜆 = (
𝐿𝑚𝑎𝑥𝜆−𝐿𝑚𝑖𝑛𝜆

𝑄𝐶𝑎𝑙𝑚𝑎𝑥−𝑄𝐶𝑎𝑙𝑚𝑖𝑛
) ∗ (𝑄𝐶𝑎𝑙 − 𝑄𝐶𝑎𝑙𝑚𝑖𝑛) + 𝐿𝑚𝑖𝑛𝜆𝑎 (5) 

 

Equation (1) was used for Landsat TM where 44, 𝐿𝜆 = 

Spectral radiance, 𝐿𝑚𝑎𝑥𝜆 = Maximum spectral radiance of 

band 6, 𝐿𝑚𝑖𝑛𝜆 = Maximum spectral radiance of band 6, 

𝑄𝐶𝑎𝑙𝑚𝑎𝑥= maximum digital number (DN) of the band 6, 
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𝑄𝐶𝑎𝑙𝑚𝑖𝑛= minimum digital number (DN) of the band 6, 

𝑄𝐶𝑎𝑙 = bands' digital value (DN), which ranges from 0 to 

255 31. 

 

𝐿𝜆 = 𝑀𝐿 × 𝑄𝐶𝑎𝑙 × 𝐴𝐿                                                            (6) 

 

Equation (2) was obtained for Landsat OLI from33 where 𝐿𝜆 

= Spectral radiance, 𝑀𝐿= scaling factor for multiplicative 

radiance, 𝑄𝐶𝑎𝑙 =bands (DN) value, 𝐴𝐿= band radiance 

additive scaling factor for band 10 and band 11 obtained 

from metadata of the satellite imagery10,24,63. 

 

Secondly, to calculate Brightness temperature in 0C spectral 

radiance was further calculated. Eq. (7) was used for 

calculation purposes:  

 

𝐵𝑇 =
𝐾2

𝑙𝑜𝑔(
𝐾1
𝜆1

+1)
− 273.15                                                     (7) 

 

where 𝐵𝑇 = Top of atmospheric brightness temperature (°C), 

𝜆1 = Top of atmosphere (TOA) spectral radiance, 𝐾2and 𝐾1 

are the calibration constants of the thermal band of Landsat 

5 and Landsat 8.   

 

Thirdly, the normalized difference vegetation index (NDVI) 

was calculated by considering the output of brightness 

temperature. Normalized difference vegetation index is the 

standardized vegetation index which is calculated using two 

bands of Landsat 8 and Landsat 5 namely, for Landsat 8 OLI 

(band 5) infrared band and (band 4) red band and Landsat 5 

TM (band 4) infrared band and (band 3) red band 

respectively25,64,67. 

 

𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅−𝑅

𝑁𝐼𝑅+𝑅
                                                                      (8) 

 

where 𝑁𝐼𝑅 = Near Infrared Band and 𝑅 = Red band of 

Landsat satellite imageries. 

    

Fourthly, to calculate the proportion of vegetation, it is 

important to consider the values of eq. (8). Eq. (9) is used for 

the calculation of 𝑃𝑣3,45. 

 

𝑃𝑣 = [
𝑁𝐷𝑉𝐼−𝑁𝐷𝑉𝐼𝑚𝑖𝑛

𝑁𝐷𝑉𝐼𝑚𝑎𝑥−𝑁𝐷𝑉𝐼𝑚𝑖𝑛
]

2
                                                        (9) 

 

where 𝑃𝑣 = proportion of vegetation, 𝑁𝐷𝑉𝐼 = Normalized 

Difference Vegetation Index, 𝑁𝐷𝑉𝐼𝑚𝑖𝑛= Minimum DN 

value of NDVI output and 𝑁𝐷𝑉𝐼𝑚𝑎𝑥= Maximum DN value 

of NDVI output.  

 

The output of 𝑃𝑣 helped to calculate land surface emissivity. 

The emissivity is obtained from eq. (10)44: 

 

𝜀 = 0.004 × 𝑃𝑣 + 0.986                                                       (10) 

 

where 𝜀 = emissivity, 𝑃𝑣= calculated proportion of 

vegetation using eq. (10) and value 0.986 is the 

corresponding value of the equation.  

Lastly, to retrieve land surface temperature, inputs were 

taken from eq.  

 

𝐿𝑆𝑇 =
𝑇

1+(
𝜆𝑇

𝑐2
)∗𝑙𝑛(𝜀)

                                                           (11) 

 

where BT = Top of atmosphere brightness temperature (°C), 

𝜆 = wavelength of emitted radiance, 𝜀 = land surface 

emissivity and 𝑐2=, Constant value obtained by the formula 

h * c / s 20,36,51.  

 

Estimation of SUHI and UTFVI: Based on the literature, 

determining SUHI involves measuring temperature in urban 

and rural areas 31 simultaneously to find the temperature 

difference, which typically shows urban areas being warmer. 

SUHI is computed with equation (12) and UTFVI is used to 

quantify SUHI vulnerability in the study area with equation 

(13) 13,34,38,50. 

 

𝑆𝑈𝐻𝐼 =
𝑇𝑠−𝑇𝑚

𝑆𝑇𝐷
                                                                   (12) 

 

where 𝑇𝑠 = land surface temperature, 𝑇𝑚 = mean of the land 

surface temperature of the study area and 𝑆𝑇𝐷 = standard 

deviation. 

 

𝑈𝑇𝐹𝑉𝐼 =
𝑇𝑠−𝑇𝑚

𝑇𝑚
                                                                    (13) 

 

where 𝑇𝑠 = land surface temperature and 𝑇𝑚 = mean of the 

land surface temperature of the study area. 

 

Results and Discussion 
To understand the changes in Land Use and Land Cover 

(LULC) from 1991 to 2021, figures 4 and 5, along with table 

2 were created for detailed analysis of the study area. In 

1991, the landscape was mainly characterized by coconut 

and cashew plantations, barren land, residential areas as well 

as DM and FDM forest cover (Dense Moist and Fragmented 

Dense Moist).  

 

More precisely, coconut plantations covered an area of 15.47 

sq. km (6.15%), while barren land spanned over 58.13 sq. 

km of areas (23%), residential areas accounted for 27.94 sq. 

km (11.15%) and DM and FDM forests made up 32.14 sq. 

km (12.72%).  

 

In 2021, there were significant changes in all 19 land use 

classes, with a noticeable 2.74% decrease in coconut 

plantation area (Table 2). In 2021, some of the coconut 

plantation land was converted into residential (1.37 sq. km), 

commercial and services (5.54 sq. km) and transportation 

and utilities (0.05 sq. km) purposes, making a total of 6.96 

sq. km out of the original 13.89 sq. km (Fig. 6). In the same 

way, land that was once used for growing cashew trees, was 

transformed into residential (0.83 sq. km) and commercial 
and service areas (0.85 sq. km), amounting to a total of 1.73 

sq. km (Fig. 6). The growing tourism industry was mainly 

responsible for these changes.  
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From 1991 to 2021, the area of barren land decreased 

significantly by 5.99%, dropping from 58.13 sq. km to 42.99 

sq. km. During this shift, barren land was transformed into 

residential purpose (5.06 sq. km), commercial and services 

(7.00 sq. km) and industry (1.87 sq. km), as shown in figure 

6. Additionally, there was a notable increase in the area of 

freshwater bodies, rising from 0.14 sq. km in 1991 to 0.083 

sq. km in 2021, due to the development of a canal for 

household and agricultural use (Table 2).  

 

Approximately 0.42 sq. km of residential land was changed 

to commercial and service use while agricultural land, 

coconut and cashew plantations, barren land, DM and FDM 

forest cover and open scrub together added 10.53 sq. km to 

the growth of residential areas (Figures 6 and 7). As a result, 

the area of residential land grew from 27.94 sq. km in 1991 

to 38.07 sq. km in 2021. Notably, there was a significant 

increase in the area of commercial and service land which 

grew from 3.72 sq. km to 24.32 sq. km, representing 80% 

increase. The increase was primarily fueled by the tourism 

sector and urban sprawl, particularly in the outskirts 

extending towards Porvorim (Figure 5). 

 

Observations revealed a decline in the area of DM and FDM 

forest cover and open scrub from 27.02 sq. km and 14.83 sq. 

km in 1991 to 2021 respectively, with no change in their total 

combined area. Significantly, land that was once labelled as 

DM and FDM forest cover was converted for residential and 

commercial purposes (Figures 6 and 7). To sum up, the rise 

in tourism and associated activities has led to modifications 

in two LULC categories (Residential and Commercial and 

Services) from 1991 to 2021 as shown in figures 4, 5 and 6 

and table 2.  

 

    
                                   Figure 4: LULC 1991                                                        Figure 5:  LULC 2021    

 

Table 2 

Percentage change in area from 1991 to 2021 

Classes 1991 Sq. 

Km. 

1991 

% 

2021 Sq. 

Km. 

2021 

% 

% 

(Increased/Decreased) 

Tidal River 16.42 6.59 15.87 6.28 -0.31 

Fresh water bodies 0.14 0.05 0.83 0.33 0.28 

Salt Pans 0.11 0.04 0.17 0.07 0.03 

Forested Wetland 5.15 2.09 6.09 2.41 0.32 

Non-forested wetland 4.57 1.8 4.47 1.77 -0.03 

Agricultural Land 47.94 18.98 45.63 18.06 -0.92 

Coconut Plantation 13.89 5.49 6.95 2.75 -2.74 

Cashew Plantation 15.47 6.15 13.69 5.42 -0.73 

Fallow Land 1.73 0.68 1.49 0.59 -0.09 

Barren Land 58.13 23 42.99 17.01 -5.99 

Rocky Areas 0.53 0.4 0.66 0.26 -0.14 

Sand dunes and Sandy Area 2.22 0.87 1.62 0.64 -0.23 

Residential 27.94 11.15 38.07 15.07 3.92 

Commercial and Services 3.72 1.47 24.32 9.63 8.16 

Industrial 0.31 0.12 2.20 0.87 0.75 

Transportation and Services 4.08 1.17 4.79 1.90 0.73 

DM and FDM Forest Land 32.14 12.72 27.06 10.71 -2.01 

Open scrub and Fairly Open scrub 17.95 7.14 15.42 6.10 -1.04 

Mining 0.21 0.09 0.34 0.13 0.04 

Total 252.66 100 252.66 100  
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Figure 6: Percentage change in area from 1991 to 2021. 

 

 
Figure 7: Transition Matrix 1991-2021 

 

Accuracy Assessment: A confusion matrix was created 

using different equations to compare land use land cover 

classes with ground truth data and matrix 1 and matrix 2. The 

results are shown in matrix 1 and matrix 2. Ground-

controlled points with reference maps for 1991 and 2021 are 

displayed in fig. 8 and fig. 9. In year 1991, classes such as 

tidal river, fresh water bodies, salt pans, coconut plantation, 

barren land, sand dunes and sandy area, residential, 

commercial and services, mining, DM and FDM forest land, 

open scrub and fairly open scrub, industrial and fallow land 

shared 100 % user’s accuracy, while it was noticed that 

classes namely agricultural land (91.66%), cashew 

plantation and bare exposed rocks (85.71%) and non-

forested wetland shared the lowest users accuracy of (75%), 

while in year 2021 classes such as tidal river, fresh water 

bodies, salt pans, forested wetland, coconut plantation, 

cashew plantation, fallow land, barren land, base exposed 
rocks, industrial,, transportation and mining gave 100% 

users accuracy. Remaining classes such as residential, DM 

and FDM forest land and open scrub and fairly open scrub 

(92.3%), sand dunes and sandy area (88%), agricultural land 

(81.61%) and among all the classes, non-forested class gave 

less users accuracy of 75% (table 3). If we closely look at the 

producer’s accuracy (table 3) except classes non-forested 

wetland (77%,85%), forested wetland (100%, 83%), 

agricultural land (84.61%, 100%), sand dunes and sandy 

area (88.88%, 100%), residential (92.3%, 92%), commercial 

and services (77.77%, 70%), DM and FDM forest land 

(92.3%, 100%) and open scrub and fairly open scrub (92.3%, 

100%) in the year 1991 and 2021 respectively, had low 

producers accuracy while remaining classes gave 100% 

producers accuracy, mainly due to the selected sites distant 

from the scientific unit borders, which minimize the 

likelihood of crossover with other scientific units and 

accounted for the high percentage.  

 

Thus, in the end, it can be interpreted that overall directed 
classification accuracy was 93.42% and 94.73% for the years 

1991 and 2021 respectively. (T) Kappa coefficient for the 

year 1991 was 92.97% and 94.38% for the year 2021.  

Classes Tidal River
Fresh water 

bodies
Salt Pans

Forested 

Wetland

Non-forested 

wetland

Agricultural 

Land

Coconut 

Plantation

Cashew 

Plantation
Fallow Land Barren Land Rocky Areas

Sand dunes & 

Sandy Area
Residential

Commercial & 

Services
Industrial

Transportation & 

Services

DM & FDM 

Forest Land

Open scrub & 

Fairly Open 

scrub

Mining Total

Tidal River 15.32 0.10 0.21 0.14 0.02 0.05 0.03 15.87
Fresh water bodies 0.14 0.01 0.05 0.53 0.05 0.05 0.83

Salt Pans 0.11 0.05 0.17
Forested Wetland 0.54 4.87 0.49 0.12 0.07 6.09

Non-forested wetland 0.45 0.16 3.80 0.01 0.02 4.47
Agricultural Land 0.02 0.05 45.29 0.24 45.63

Coconut Plantation 0.02 6.90 0.03 6.95
Cashew Plantation 13.69 13.69

Fallow Land 1.49 1.49
Barren Land 42.57 0.02 0.37 0.03 42.99
Rocky Areas 0.02 0.03 0.53 0.06 0.03 0.66

Sand dunes and Sandy Area 0.05 1.55 1.62
Residential 0.60 1.37 0.83 5.06 0.01 27.52 1.66 1.01 38.07

Commercial and Services 1.51 5.54 0.85 7.00 0.58 0.42 3.72 3.25 1.53 24.32
Industrial 1.87 0.31 0.02 2.20

Transportation and Services 0.04 0.02 0.02 0.19 0.05 0.05 0.28 4.07 0.01 0.07 4.79
DM & FDM Jungle 0.04 27.02 27.06

Open scrub & Fairly Open scrub 0.59 14.83 15.42
Mining 0.17 0.03 0.14 0.34

Total 16.42 0.14 0.11 5.15 4.57 47.94 13.89 15.47 1.73 58.13 0.53 2.22 27.94 3.72 0.31 4.08 32.14 17.95 0.21 252.66

2

0

2

1

1991

 Stable area Negative Change Positive Change
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Matrix 1 

Relationship between LULC classes and Ground Truth (1991) 

Classes 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Total (User) 

1 10                   10 

2  3                  3 

3   3                 3 

4    8                10 

5     6               8 

6      11            1  12 

7       8             8 

8        6         1   7 

9         4           4 

10          13          13 

11           6         7 

12            8        8 

13             12       12 

14              7      7 

15               3     3 

16             1 2  8    11 

17                 12   12 

18                  12  12 

19                   2 2 

Total 

(Producer) 

10 3 3 8 8 13 8 6 4 13 6 9 13 9 3 8 13 13 2 152 

Tidal river (1), fresh water bodies (2), salt pans (3), forested wetlands (4), non-forested wetlands (5), agricultural land (6), coconut 

plantation (7), cashew plantation (8), fallow land (9), barren land (10), bare exposed rocks (11), sand dunes and sandy area (12), 

residential (13), commercial and services (14), industrial (15), transportation and utilities (16), DM and FDM forest land (17), open 

scrub and fairly open scrub (18) and mining (19). 

 

Matrix 2 

Relationship between LULC classes and Ground Truth (2021) 

Classes 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Total 

(User) 

1 9    1               10 

2  3                  3 

3   3                 3 

4    10                10 

5    2 6               8 

6      12              12 

7       8             8 

8        7            7 

9         4           4 

10          12    1      13 

11           7         7 

12           1 7        8 

13             12       12 

14              7      7 

15               3     3 

16             1 2  8    11 

17                 12   12 

18                  12  12 

19                   2 2 

Total 

(Producer) 

9 3 3 12 7 12 8 7 4 12 8 7 13 10 3 8 12 12 2 152 

Tidal river (1), fresh water bodies (2), salt pans (3), forested wetlands (4), non-forested wetlands (5), agricultural land (6), coconut 

plantation (7), cashew plantation (8), fallow land (9), barren land (10), bare exposed rocks(11), sand dunes and sandy area (12), 

residential (13), commercial and services (14), industrial (15), transportation and utilities (16), DM and FDM forest land (17), open 

scrub and fairly open scrub (18) and mining (19). 
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Table 3 

Accuracy Assessment for the years 1991 to 2021 

U
ser A

ccu
racy

 

Classes % of Accuracy (1991) % of Accuracy (2021) 

Tidal River 100 100 

Fresh water bodies 100 100 

Salt Pans 100 100 

Forested Wetland 80 100 

Non-forested wetland 75 75 

Agricultural Land 91.66 84.61 

Coconut Plantation 100 100 

Cashew Plantation 85.71 100 

Fallow Land 100 100 

Barren Land 100 100 

Bare exposed rocks 85.71 100 

Sand dunes and Sandy Area 100 88.88 

Residential 100 92.3 

Commercial and Services 100 77.77 

Industrial 100 100 

Transportation and Utilities 72.72 100 

DM and FDM forest land 100 92.3 

Open scrub and Fairly Open scrub 100 92.3 

Mining 100 100 

P
ro

d
u
cer A

ccu
racy

 

Classes % of Accuracy (1991) % of Accuracy (2021) 

Tidal River 100 100 

Fresh water bodies 100 100 

Salt Pans 100 100 

Forested Wetland 100 83 

Non-forested wetland 75 85 

Agricultural Land 84.61 100 

Coconut Plantation 100 100 

Cashew Plantation 100 100 

Fallow Land 100 100 

Barren Land 100 100 

Bare exposed rocks 100 87 

Sand dunes and Sandy Area 88.88 100 

Residential 92.3 92 

Commercial and Services 77.77 70 

Industrial 100 100 

Transportation and Utilities 100 100 

DM and FDM forest land 92.3 100 

Open scrub and Fairly Open scrub 92.3 100 

Mining 100 100 

Overall Accuracy 93.42 % 94.73 % 

 (T) Kappa Coefficient 92.97 % 94.38 % 

 

Retrieval of LST 
The increase in land surface temperature (LST) over the 

study period was attributed to a decrease in vegetation cover 

and an increase in impervious surfaces, mainly in built-up 

areas such as residential and commercial services (Table 2) 

as shown in fig. 10. To better understand LST, the area was 

divided into five major classes: class 1: 16-20, class 2: 20-

24, class 3: 24-28, class 4: 28-32 and class 5: 32-36. In 1991, 

the lowest temperature was in class 16-20 °C, while in 2021, 

it was in class 20-24 °C. The minimum temperature of the 

study area has also changed over the last three decades (Fig. 

10). The highest LST temperature varied between 1991 and 

2021, with the highest temperature in 1991 being in class 28-

32, while in 2021, heating in the study area had increased, 

particularly in built-up areas and barren land (Fig. 13 and 

14). 

 

Estimation of SUHI and UTFVI: The surface urban heat 

index (SUHI) of the years 1991 and 2021 is delineated by 

the map. SUHI serves as a metric to gauge the disparity in 

temperature between urban areas and the surrounding rural 

regions. In fig. 11, the legend located at the lower section of 
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the illustration elucidates that measurements of SUHI are 

expressed in degrees Celsius (°C). In 1991 and 2021, the 

range of SUHI spanned from -3.0°C (cooler than the 

surrounding areas) to 3.0°C (warmer than the surrounding 

areas). Throughout the year 1991, the majority of the area 

exhibited values within the class -3.0 – 0.0 range, implying 

that the urban heat island effect results in slightly elevated 

temperatures in urban areas when compared to the adjacent 

rural areas.  

 

However, there are certain regions on the map, particularly 

in the northern and western sections, that are depicted in 

darker shades of orange, indicating the opposite trend. In 

contrast to 1991, there appears to be a larger expanse falling 

within the range of class 1.5 – 3 to >3.0, signifying an 

intensification of the urban heat island effect. Furthermore, 

the areas colored in green are smaller in 2021 when 

compared to 1991.  

 

The study area has undergone significant changes in land use 

and land cover over the past three decades, primarily due to 

economic progress and population growth. During the 

period from 1991 to 2021, the urban thermal feel variation 

index (UTFVI) in Bardez taluka exhibited a noticeable 

upward trend, indicating an increase in temperature 

fluctuations within urban areas. This increase has negative 

implications for the comfort of the residents, as the area of 

land that provides 'excellent' comfort, has decreased from 

37.30 square kilometers (14.76%) in 1991 to 27.05 square 

kilometers (10.71%) in 2021, indicating a reduction of 

4.05%. 

 

   
          Figure 8: Accuracy Assessment 1991                          Figure 9: Accuracy Assessment 2021 

 

 

 
Figure 10: LST for the years 1991 and 2021 



     Disaster Advances                                                                                                                        Vol. 18 (2) February (2025) 

https://doi.org/10.25303/182da01017        11 

 
Figure 11: SUHI of the years 1991 and 2021 

 

 
Figure 12: UTFVI of the year 1991 and 2021 
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On the other hand, the area with the lowest level of comfort 

has experienced an expansion from 13.98 square kilometers 

(5.54%) to 38.17 square kilometers (15.11%), representing a 

9.57% increase during the same period (Table 4). These 

modifications are likely to be influenced by factors such as 

urbanization, impermeable surfaces like asphalt and 

concrete, towering structures and congested infrastructure, 

limited green spaces, altered microclimate, human activities 

such as industrial processes, transportation and energy 

consumption, which have the potential to generate urban 

heat islands and raise overall temperatures in cities, thereby 

impacting the comfort levels of the residents.  

 
The surface urban heat island (SUHI) effect and worsening 

climatic conditions in urban areas are caused by increased 

LST. The urban thermal field variance index (UTFVI) 

phenomena provides a quantitative and qualitative 

description of the SUHI effect. A Pearson's correlation 

matrix is an adequate metric to establish a relationship 

between multiple variables.     

 

 
Figure 13: UTFVI of the year 1991 and 2021 Barren Land 

 

 
Figure 14: UTFVI of the year 1991 and 2021 Built-up Land 
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Table 4 

Showing Urban Thermal Comfort Level for the year 1991 to 2021 

Class UTFVI UTFVI 

Presence 

Area 

Sq. Km. 1991 

Area % 

1991 

Area 

Sq._Km. 2021 

Area % 

2021 

UTCL 

1 < 0 None 37.30 14.76 27.05 10.71 Excellent 

2 0 – 0.005 Weak 59.84 23.68 50.89 20.14 Good 

3 0.005 – 0.01 Middle 60.82 24.07 63.45 25.11 Normal 

4 0.01 – 0.015 Strong 52.45 20.76 28.54 11.30 Bad 

5 0.015 – 0.02 Stronger 28.27 11.19 44.56 17.64 Worse 

6 > 0.2 Strongest 13.98 5.54 38.17 15.11 Worst 

Total 252.66 100 252.66 100  

 

Matrix 3 

Correlation Matrix 1991 

Layer LST SUHI UTFVI 

LST 1.00000 0.97295 0.97295 

SUHI 0.97295 1.00000 1.00000 

UTFVI 0.97295 1.00000 1.00000 

 

Matrix 4 

Correlation Matrix 2021 

Layer LST SUHI UTFVI 

LST 1.00000 0.94652 0.94652 

SUHI 0.94652 1.00000 1.00000 

UTFVI 0.94652 1.00000 1.00000 

 

The diagonal elements are one because of the self-

correlation and we can observe a strong correlation between 

LST, SUHI and UTFVI. The matrix refers to the conclusion 

that all the regions with higher LST experience higher SUHI 

and UTFVI. Also, the SUHI and UTVFI show a one-to-one 

correlation for both instances in 1991 and 2021. 

 

t-test and f-test: Two separate groups were established for 

the analysis of land surface temperature (LST) in the study 

region for the years 1991 to 2021, as well as for the urban 

temperature field vertex index (UTFVI) in those same years. 

The average and variability of the groups were assessed 

using the t-test and f-test. 

 

Parameters of t-test, f-test: The tests were performed at a 

95% confidence level or 5% significance level. 

 

Null Hypothesis for t-test: Two groups are independent 

random samples drawn from a normal distribution having 

equal means with unknown variance.  

 

Null Hypothesis for f-test: Two groups are independent 

random samples drawn from a normal distribution having 

the same variance.  

 

h=0: Null hypothesis cannot be rejected at the 5% 

significance level. 

h=1: Null hypothesis can be rejected at a given confidence 

level i.e. there is no statistical evidence that the null 

hypothesis shall be accepted. 

p: p, or probability expresses the likelihood that any 

observed variation across groups results from chance. The 

value ranges between 0-1. 

ci for t-test: Confidence interval of the population mean 

with lower and upper bounds within a 95% confidence 

interval. 

ci for f-test: Confidence interval of the ratios of variances 

with lower and upper bounds within a 95% confidence 

interval. 

Statistic: The test statistic value. 

 

The results show that the mean and the variance of LST for 

1991 and 2021 of the entire study region are statistically 

significantly different at a 95% confidence level. In contrast, 

the UTFVI has the same mean for 1991 and 2021, but the 

variance is statistically significantly different.  

 

Z-test: The z-test can be performed when the population 

standard deviation is known and the sample size is very 

large. Two LULC classes were segregated, namely, barren 

and the built-up. These classes were considered the sample 

and the entire region was considered a population for this 

sampled data. With the information on the LST and UTFVI 

standard deviation, two classes were compared with the 

population mean. 

 

Parameters of z-test - Null Hypothesis for z-test: The 

sample is drawn from a normal distribution with the same 

mean and standard deviation as the populations. 
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h=0: Null hypothesis cannot be rejected at the 5% 

significance level. 

h=1: Null hypothesis can be rejected at a given confidence 

level i.e. there is no statistical evidence that the null 

hypothesis shall be accepted. 

p: p, or probability expresses the likelihood that any 

observed variation across groups results from chance. The 

value ranges between 0-1. 

ci:  Confidence interval of the population mean with lower 

and upper bounds within a 95% confidence interval. 

Statistic: The test statistic value. 

 

The results of z-tests performed on the samples specified in 

table 7 and table 8 suggest that the population mean and the 

sample mean are statistically significantly different for all 

the categories. The mean LST of barren and built-up areas is 

larger than the mean LST of the entire region. These LULC 

categories suffer from higher LST and higher UTFVI 

compared to the whole study area.  

 

Conclusion 
The study utilizes land surface temperature (LST) data and 

the urban thermal field variance index (UTFVI) to assess 

urban thermal comfort levels which are found to be 

adversely affected by increased temperature fluctuations in 

urban areas. The research highlights the impact of land use 

and land cover changes such as urbanization, impenetrable 

surfaces and reduced green areas, on the prevalence of urban 

heat islands and their negative effects on residents' comfort 

levels. The results of the analysis reveal significant shifts in 

land cover classes over the three decades with notable 

changes in areas such as coconut plantations, barren land, 

residential areas and commercial and services zones.

 

Table 5 

Showing T-test of LST and UTFVI. 

Categories h p ci Statistic t 

LST 1 0 -8.0294 -7.9983 -1010.1 

UTFVI 0 0.99998 -0.00025925 -0.00025925 -2.7975e-05 

 

Table 6 

Showing F-test of LST and UTFVI. 

Categories h p ci Statistic t 

LST 1 0 2.3875 2.4231 2.4052 

UTFVI 1 0 0.018152 0.018423 0.018287 

 

Table 7 

Showing hypothesis testing for the years 1991 and 2021 of Barren Land and Built-up Land (LST). 

Year LULC 

Category 

Population 

mean 

Population 

Sigma 

Sample 

mean 

Sample 

Sigma 

h p ci z-

Statistic 

1991 Barren 

Land 

21.345 3.5353 24.445 2.7925 1 0 24.418 24.472 226.12 

Built-up 

Land 

21.266 2.4655 1 8.09e-

06 

21.232 21.301 -4.4626 

2021 Barren 

Land 

21.245 3.5353 30.759 2.6446 1 0 30.739 30.778 137.95 

Built-up 

Land 

30.03 2.6446 1 0 30.014 30.046 82.081 

 

Table 8 

Showing hypothesis testing for the years 1991 and 2021 of Barren Land and Built-up Land (UTFVI). 

Year LULC 

Category 

Population 

mean 

Population 

Sigma 

Sample 

mean 

Sample 

Sigma 

h p ci z-

Statistic 

1991 Barren 

Land 

-2.0355e-08 0.0093969 0.069488 0.007545 1 0 0.0083836 0.008525 234.28 

Built-up 

Land 

-

0.0003848 

0.0066764 1 1.4e-

16 

-

0.00047608 

-0.00029351 -8.2615 

2021 Barren 

Land 

-1.6655e-08 0.069488 0.049753 0.07449 1 0 0.049147 0.050359 160.81 

Built-up 

Land 

0.018627 0.07449 1 0 0.018138 0.019116 74.665 
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The findings suggest that these changes are largely driven by 

factors such as tourism-related activities, rapid urban 

expansion and infrastructure development. The urban heat 

islands in the Bardez Taluka region have led to significant 

alterations in land use and land cover, exacerbating urban 

thermal comfort issues. The study finds that the urban 

thermal feel variation index (UTFVI) has risen steadily 

throughout the analyzed time frame, reflecting increased 

temperature variations in urban areas. As a consequence, the 

proportion of land providing excellent thermal comfort has 

shrunk from 14.76% in 1991 to 10.71% in 2021 while areas 

with poorer comfort levels have expanded correspondingly. 

These trends are attributed to factors such as urbanization, 

impervious surfaces and insufficient greenery along with 

influences like tourism, infrastructure development and 

climate change. 

 

To address these issues, it is suggested to carry out strategies 

that concentrate on intelligent urban planning, integrating 

porous surfaces, enhancing vegetation quality, reducing 

heat-generating activities, designing compact urban layouts 

and strategically placing buildings to improve natural 

ventilation and to minimize urban heat island impacts. 

Encouraging energy efficiency, responsible energy 

consumption and preserving green areas to mitigate urban 

heat island make impact on comfort levels. 
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